Data-Driven Impulse Response Regularization via Deep Learning
نویسندگان
چکیده
منابع مشابه
Data-Driven Impulse Response Regularization via Deep Learning
We consider the problem of impulse response estimation for stable linear single-input single-output systems. It is a wellstudied problem where flexible non-parametric models recently offered a leap in performance compared to the classical finitedimensional model structures. Inspired by this development and the success of deep learning we propose a new flexible datadriven model. Our experiments ...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملDeep learning - Regularization
where, θ̃ is an estimator of θ coming from update equations or solution of optimization procedure. Variability in θ̃ is because of randomness in data and bias is due to model mismatch. Well known bias-variance trade offAs complexity of the model is increased model mismatch(bias) is decreased while variance in the prediction is increased because of randomness in training inputs. 4. Deep Learning s...
متن کاملData-Driven Ghosting using Deep Imitation Learning
Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player...
متن کاملData-Driven Fuzzy Modeling Using Deep Learning
Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2018
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.09.081